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Navier-Stokes Computations of a Prolate Spheroid at
Angle of Attack

Veer N. Vatsa* and James L. Thomast
NASA Langley Research Center, Hampton, Virginia

Bruce W. Wedant
Vigyan Research Associates, Inc., Hampton, Virginia

Three-dimensional viscous flow calculations are made for a 6:1 prolate spheroid at conditions for which
detailed experiniental data are available. The computations are made with two finite-volume algorithms for the
compressible Navier-Stokes equations, one usmg central differencing for the convective and pressure terms. and
the other usmg an upwind-biased flux-dlfference-spllttmg approach. The effects of artificial dissipation on the
accuracy of the numerical results are inclided. Generally good agreement of the computations with the
experimental results is obtained over a range of Reynolds numbers and angles of attack up to 30 deg, although
the results at lower Reynolds numbers are sensitive to the assumed transition location.

Nomenclature
C = Jacobian matrix, C = 8H/3Q
c =speed of sound
¢ = skin-friction coefficient, ¢ = (¢ + (¢r)?
d = dissipation term
e =total energy per unit volume
F,G,H =inviscid fluxes
f =dissipation scaling term
H =total enthalpy, c2/(y—1)+¢%/2
H, =viscous flux
J =transformation Jacobian
L =reference length, taken as major axis
M =Mach number
D = static pressure, (y—1)[e —pg?/2]
Q = conservation variables [p,ou ,ov,0w,e]7
q =total velocity, also primitive variable vector,
[p:'u U WD ] T
Re;, =Reynolds number, pdudl*/pd
T,T-! =diagonalizing matrices
t =time
U,V,W =contravariant velocities )
u,u,w  =Cartesian velocities in x, y, and z directions
W = solution vector, Q +[0,0,0,0,p17
X, V.2 = Cartesian coordinates
o = angle of attack ‘
¥ =ratio of specific heats, also shear-stress angle
A,V =difference operators
€K,V =damping coefficients
K = spatial differencing parametér
X =maximur eigenvalue
A =diagonal matrix of eigenvalues
u =viscosity coefficient
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£,8 = general curvilinear coordinates
o = density

o = Prandtl number

Subscripts

L,R =left and right of interface

[ = conditions at freestream
Superscrlpts

—quantltles in generalizéd coordinates
= Roe-averaged value
= dimensional value

*

Introduction

'HE flow over a body at incidence is characterized by
streamwise separations over thie aft portion and crossflow
separations over the forward portions of the body. The cross-
flow separations lead to multiple shed vortices above the body
that interact nonlinearly with réspect to angle of attack such
that the prediction of performance and stability i§ extremely

“difficult, especially at those angles of attack where the vortical

flow is time-dependent and asymmetric. Most computations
to date have been for supersonic flow where the computations,
owing to a reduced computational domain or the use of parab-
olized procedires, are much more tractable than for subsonic
flows. With increasing developments in algorithms and com-
puters, subsonic computations on sufficiently fine meshes to
resolve the numerical issues and address the physical aspects
of the flow at high angle of attack are p0551ble

The objective of the preserit investigation is the application
and validation of two recently developed Navier-Stokes codes
to low-speed flow aver a 6:1 prolate spheroid at various angles
of attack and Reynolds numbers. These cases were. selected
because detailed experimental measurements have been made
by Meier et al.!-? The measurements are extensive and include
surface shear stresses, pressures, and oil flows. Previous com-
putations are also available using boundary-layer,** parabo-
lized Navier-Stokes,5 and thin-layer Navier-Stokes methods.”
The primary emphasis of the present work is an assessment of
the ability of the dlgorithms to model accurately the critical
elements of the flowfield, which, in this case, are the primary
and secondary separation lines along which the vortical flows
are formed. This assessment can only be made if the accuracy
of the numerical results is determined. Comparisons between
the two numerical schemes on a given mesh are used to assess
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the effects of truncation error. Supporting calculations show-
ing the effect of differing mesh densities are given in Ref. 8.

The two numerical algorithms used are described in a later
section. The first is an implicit flux-differencing-splitting
method,? 12 and the second is an explicit central-difference
method.!>!* The former relies on upwind differencing to
provide the artificial dissipation needed for stability; in the
latter, controlled amounts of artificial dissipation are added
explicitly. Computations for an angle of attack of 10 deg are
compared with experiment at a Reynolds number for which
the flow is naturally transitional and at a higher Reynolds
number with fixed transition. At the higher Reynolds number,
computations are also made for an angle of attack of 30 deg.

Governing Equations

The basic equations under consideration here are the time-
dependent Navier-Stokes equations in generalized coordinates
where the {~coordinate lines are nearly orthogonal to the body
surface. Since the dominant viscous effects for high Reynolds
number turbulent flow arise from viscous diffusion normal to
the body surface, the thin-layer assumption is employed where
only the viscous diffusion terms normal to the body surface
are retained. The governing equations can be written in the
conservation law form as
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The equations are nondimensionalized with L*, p%, c%, and
u¥. An ideal gas is assumed; the effect of turbulence is ac-
counted for through the concepts of an eddy viscosity and
eddy conductivity. The algebraic turbulence model of Baldwin
and Lomax!>16 is used to evaluate the turbulence quantities.

Computational Algorithms

Both of the computational algorithms used in this study are
semidiscrete finite-volume methods constructed so that the
steady-state solution is independent of the time step and are
spatially second-order accurate. The shear-stress and heat-
transfer terms are centrally differenced in both; the convective
and pressure terms are upwind differenced in the first and
centrally differenced in the second. The dissipative mecha-
nisms in both algorithms are contrasted in a separate section.

The governing equations, while written in generalized curvi-
linear coordinates, are used here in a finite-volume formula-
tion. The finite-difference solution to the fluid dynamic equa-
tions in strong conservation form in a transformed space is
equivalent to the solution of a flux-summation algorithm in
physical space or the finite-volume algorithm, subject to
proper interpretation of the metric derivatives. The ratio of
the metric derivatives to the Jacobian is taken to be the appro-
priate projected area of cell faces, and the reciprocal of the
Jacobians is taken to be the cell volumes. Such an approach
then honors the geometric conservation law and makes the
numerical scheme compatible with the finite-volume formula-
tion.

Upwind-Biased Algorithm

The convective and pressure terms are differenced with the
upwind-biased flux-difference-splitting of Roe.%!! The spatial
derivatives are written conservatively as a flux balance across
a cell as, e.g.

(31:1) _ Heypy—Hye_y, ©)

/e Gew—tew

where k refers to a cell-centered location (§;,n;,8) and k +
1/2 corresponds to a cell interface location (§;,9;,$k + 1/2). The
interface flux is determined from a state-variable interpolation
and a locally one-dimensional model of wave interactions
normal to the cell interfaces; it can be written as the exact
solution to an approximate Riemann problem

Hevin=3 [H(QL) + H(QR) ~ 1C1(Qx - QL)] ™

k+1/2

where |C| = TIAIT-! is evaluated with Roe-averaged vari-
ables such that Ay — H; = C(Qg — Q) is satisfied exactly.

The state-variable interpolations determine the resulting ac-
curacy of the scheme. The state variable at the interface is
constructed from nonoscillatory interpolation!? of the primi-
tive variables where higher-order-accurate differencing is
given by a one-parameter family

(CIL)k+1/2—£Ik+ [(1-0Vg +(+k Aglk
1 _ -
(qR)k+1/2=q1c+1_'Z[(l+K)Vq + (1 —K)Agli 4+ ®)

where Vg and Aq are backward and forward differences of g,
respectively, that are limited, using the min-mod limiter de-
scribed in Ref. 10, to ensure monotone interpolation across
discontinuities in the solution, such as shock waves. For all of
the results presented, the third-order discretization corre-
sponding to x = 1/3 is used.
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The dissipation term contributions to the interface flux can
be written as

ICI(Qr — Q)= ITIAQ

(27
floy + kyos + g
1wl
= Jg. Doy + kyas + oy (9)

Woy + kyos + ag

fla4 + Was + oy

where

a = | W1(dp — Ap/B)

1 = =
o =5 | W + 21 (ApLsEAW)
1 = R
Ot3=5§ IW—cl(Ap — PCAW)

oy =0+ op+ oy
as = Clon — a3)
as= | WI(BAU — k,pAW)
a; = | WI(EAY — k,pAW)
as = | WI(EAW — k,AW)

52

(r—1

oy = flag + Dog + Wag — oy

The direction cosines of the cell interface directed area are
(ky,ky,k;), and the normalized contravariant velocity normal
to the cell interface is W= kyu + kyv + kw.

- The time-differencing algorithm is a spatially split approxi-
mate factorization method where the convective and pressure
terms in each of the spatial factors are treated implicitly with
first-order-accurate upwind differences. Each of the spatial
factors are approximated with a diagonal inversion in which,
because of the repeated eigenvalues of A, only three scalar
tridiagonal LU decompositions are needed in each direction.
In the normal direction, a spectral radius scaling for the vis-
cous Jacobian matrices is used. A full-approximation multi-
grid algorithm developed previously was used to accelerate the
convergence to steady state.

Central-Difference Algorithm

The central-difference scheme used here was developed for
the Euler equations by Jameson'? and extended to the three-di-
mensional Navier-Stokes equations by Vatsa.!* The cell inter-
face value of the flux can be written as

N 1 . N
Hk+1/2=’2' [Hy + Hy o 1] = Gk 12 (10)
where the dissipative term is
div1n =M 625 12 Wis1 = W)

— ek 12 Wira—=3Wii1 +3W — W) an
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In the preceding expression, the coefficients ¢ and ¢ are
related to the pressure gradient parameter » as follows:

= |pr+1 =~ 2Dk + D1
D1+ 2Dk + P i)

(2) _ 2
ek 172 = P max (v 4 1,7%)

?

4 2,
E;c)+ 172 = max [0, (x¥ — G;cl /2]

where «® and «® are constants with typical values of 1/4 and
1/256, respectively.

The term A\ , 1, used in Eq. (11) is a function of eigenvalues
associated with the flux Jacobian matrix. Jameson had origi-
nally used the sum of the maximum of the eigenvalues associ-
ated with the different coordinate directions, i.e.,

Mewr2=e+ M+ N r 12

where (A\g, A\, Ay represent the maximum eigenvalues of the
flux Jacobian matrix in the (£,9,8) directions, respectively.
Swanson and Turkel!? discuss several variants of the basic
dissipation model in order to reduce the artifical dissipation of
the numerical scheme, in general, and in the viscous layer near
the solid boundaries, in particular. In the present method, the
dissipation flux evaluated from Eq. (11) is multiplied by the
local Mach number normalized with its freestream value to
achieve a reduction in artificial dissipation. A similar strategy
was employed by Kaynak and Flores'® in an earlier paper.

A multistage Runge-Kutta time-stepping scheme is used to
advance the solution in time. The scheme requires only two
time levels of the solution in memory. In order to enhance
convergence to a steady-state solution, several acceleration
techniques, including local time-stepping, enthalpy-damping,
and residual-averaging!'4 are used.

Analysis of Dissipation Models

For the purpose of contrasting the dissipation models, it is
useful to consider a boundary-layer flow in a Cartesian coor-
dinate system, where w and z are the velocity and coordinate
normal to the surface, respectively. Only the dissipation in the
normal direction due to the convective and pressure-term dif-
ferencing is considered; smooth variation in the flow and
negligible normal pressure gradients are assumed.

For the flux-difference-splitting scheme, the first two terms
on the right-hand side of Eq. (7) represent a central-difference
approximation over a four-point stencil. The dissipation for

~ the scheme comes from the last term and, by substituting Eq.

(8) into Eq. (7), the dissipation contribution can be written
with x taken to be 1/3 as

dyr12= —(1—x)/8 Iélk+l/2 (AgQ)kH/z (12)

where A} is the undivided third difference in the ¢ direction
(normal to the surface). The components of d can be written
as

disr12 =12 [TIAT1AQ)k+ 112

A1 (Ap — Ap/Ed)
(A, (pAu)
[A;1(3AY) 13)

1A, (Ap — pcAw)/28
IAsl(Ap — peAaw)/282

=12T 12

k+1/2

where A denotes the difference between the right and left
state-variable extrapolations in the { direction. The vector
T-'AQ s the projection of the jump between the left and right
states onto the eigenvectors of C and represents the linearized
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jump in entropy, the two components of tangential velocity,
and the two ‘‘Riemann invariants’’ across the cell interface.
The matrix A in this case can be written as

A = AxAy diag (w,w,w,w + c,w —C)

1 00 1 1

u 1 0 u u

T= v 01 v v
w 0 0 w+c w—c
q¥2 u v H+cw H-—cw

In a boundary-layer flow, both the normal velocity w and
the gradients of pressure normal to the surface are small
quantities. The quantities Ap,Au ,Av are the most significant,
representing jumps in density and tangential velocity. In Eq.
(13), the largest jumps are modulated by the eigenvalue | w | of
the smallest magnitude, and the largest eigenvalues, |w + ¢l
and lw — cl1, modulate the small jumps in pressure and nor-
mal velocity. Thus, the net dissipation is a small quantity that
scales on the order of the normal velocity.

The dissipation contribution to the central-difference
scheme can be written similarly to Eq. (12) as

dis12= — [€ON QI k 4 112
= = [Emf}\r (A?’W)]k+ 1/2 14)

where the ¢? contribution is neglected, since the normal pres-
sure gradients are small and A = AxAy (Iw| + ¢). Theterm f,

(ul +0)Az
(Iwl +c)Ax

(lvl +¢)Az
(Iw! + c)Ay

Jer12=1

arises from the isotropic scaling, leading to a dissipation de-
pendent on the cell aspect ratio. For the boundary-layer flow,
f=1 in the normal direction, since Az/Ax <1 and Az/
Ay < 1. The influence of the isotropic scaling is more pro-
nounced in the streamwise and transverse directions where the
corresponding terms can be quite large. Alternate forms for f
are suggested in Refs. 17 and 19.

The components of the dissipation can be written (with
S =1)in a form analogous to Eq. (13) as

N{Ap —yAp /&)
AlpAu)
Ad{pAY) (15)

N{vAp + ptAw)/28
N(yAp — pEAW)/ 22

diiin= 25(4)Tk +1/2

k+172

where W, and W, are obtained by fully one-sided approxima-
tions (k= ~1). Comparing Eqgs. (15) and (13), the largest
difference occurs in the scalings of the difference in density
and tangential velocity, which are effectively modulated by the
speed of sound, rather than the normal velocity, as in the case
of the matrix-valued dissipation Eq. (13). By scaling the dissi-
pation according to the local contravariant Mach number
component, this discrepancy could be minimized. A simpler
strategy, used herein, is to scale the dissipation according to
the magnitude of the local Mach number, i.e.,

dk+ 12= — [6(4))\§- min <1, __A_l_> (A%W):I (16)
M., k+172

which reduces the dissipation to zero as the wall is ap-
proached. This scaling was also used in Refs. 17-19.
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Boundary Conditions and Time Stepping

At the body surface, no-slip and zero-injection conditions
are imposed. An adiabatic condition is employed for tempera-
ture, and the normal pressure gradient at the body surface is
set equal to zero. The treatment of the far-field boundary
condition is based on a characteristic treatment for quasi-one-
dimensional flow normal to the boundary.® At the down-
stream boundary, extrapolation of all variables is used. A
symmetry condition is used in the longitudinal plane of sym-
metry.

All of the flows shown in the following section were com-
puted with a spatially varying time step and were only nomi-
nally steady. The residual would converge by four orders of
magnitude from initialization at freestream conditions and
then remain nominally constant. The lift coefficient varied
with subsequent iterations over a 5% range. The skin friction,
surface streamlines, and pressures on the body ahead of the
sting were monitored through subsequent iterations and con-
verged to the results shown. This oscillatory behavior is be-
lieved to be associated with the flow past the sting in the
downstream region, which is analagous to the two-dimen-
sional wake flow past a bluff body.

Results and Discussion

Viscous flow computations for a 6:1 prolate spheroid over a
range of Reynolds numbers and angles of attack are pre-
sented. The flow conditions have been selected to correspond
to the experimental studies of Meier et al.!> Laminar as well
as transitional and turbulent flow states are investigated, de-
pending on the test conditions. The results are computed with
a quarter-diameter sting mount in order to accurately simulate
the experimental test conditions of Meier. The grids are gener-
ated by the method of transfinite interpolation. A typical grid
is shown in Fig. 1. To resolve the thin viscous layers present in
high Reynolds number viscous flows, the spacing in the nor-
mal direction near the body surface normalized with the major
axis is taken to be 1x 10~° for the Re; = 1.6 x 10 and
0.5 % 10~° for the higher Reynolds number cases. Results
from the three test cases as shown in Table 1 are presented.

The freestream Mach number used in the computations is
0.4, whereas the experimental data are taken at low-speed,
M, <0.1. Several calculations were made at Mach numbers of
0.3, 0.2, and 0.1 with only minor differences noted from the

\\\\

LTy

sy Illll//““\‘ W

s 2y S

il e
7

) Y =
it /5’1{’.':’.'.....
7% e Y

7
g
T

Iy :‘:‘:‘:\;“s‘\{ “\\:‘\‘\ S
IR
Ll 7
7 01171 e
<L
= e~

ST I g
o

Fig. 1 Partial view of computational grid for prolate spheroid with
sting mount.

Table 1 Computations considered for comparison with experiment

Case Rep x10~¢ o, deg
1 1.6 10
11 7.7 10

I 7.2 30
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results at 0.4, although the convergence to steady state is faster
as the Mach number is increased.

Case I, Re; = 1.6 X 105, o = 10 deg

Since the flow in the experimental study for this case was
considered to be nominally laminar, the first set of calcula-
tions was performed assuming the flow to be fully laminar.
The surface streamline patterns on a 73 x 49 x 49 grid, based
on computations using the central-difference (CD) scheme and
the flux-difference-splitting (FDS) scheme, are shown in Fig.
2. The numbers associated with the grid refer to the number of
grid points in the streamwise, normal, and circumferential
directions, respectively. The circumferential grid was clustered
to concentrate resolution on the leeward side. The
73 X 49 x 49 grid (175,273 grid points) is used for all the
computations in the main body of the paper and was selected
based on a grid convergence study. An unwrapped coordinate
system is employed for this figure such that the surface of the
prolate spheroid from windward to leeward planes of symme-
try between the leading edge and the sting juncture is mapped
into a rectangular domain. Such a coordinate system has been
selected to emphasize the details of the flowfield in the vicinity
of the stagnation region and the symmetry planes for such a
slender body. The streamline patterns of Fig. 2 reveal several
distinct features of the flow. The primary and secondary
crossflow separation lines are denoted as P and S, respec-
tively, and the reattachment line residing in between is denoted
as R. A region of streamwise flow reversal is also observed in
the vicinity of the sting juncture near the windward side.

By comparing Figs. 2a and 2b, it is obvious that the surface
streamline patterns computed using the CD and FDS schemes
are in close agreement with each other, including the position
of the crossflow separation and reattachment lines. The major
differences between the computed flow patterns seem to be in
the deeper penetration of the reattachment and secondary
crossflow separation lines into the leading-edge region for the
FDS computations. This is attributed to lower levels of artifi-
cial dissipation associated with the FDS scheme, as judged
from the skin-friction levels and surface streamlines computed
on a sequence of grids. For the CD scheme, computations with
the present dissipation model showed a deeper penetration of
the reattachment and secondary separation lines into the lead-
ing-edge region than results obtained with the standard dissi-
pation model of Jameson et al.,!* i.e., without the Mach
number scaling.

Comparisons of the computed shear-stess distributions in
the circumferential direction indicate that the computed re-
sults are in reasonable agreement with the data in the forward
part of the body (x/L <0.4). In the aft part of the body for
0>115 deg, the experimental values of skin friction go
through extremely large changes, generally associated with
flow transition, and are much higher than the computed val-
ues, as also observed in Refs. 4 and 7. A shear-stress vector
plot and surface streamline pattern deduced from the experi-
mental data is presented in Figs. 3 and 4 in the unwrapped
coordinate system described earlier. The magnitude of the
shear-stress vectors in a wedge-shaped zone, delineated by line
A-A, is much larger than is found elsewhere on the prolate
spheroid. The lower leg of this line A-A lies very close to the
primary crossflow separation line. Thus, it appears that the
crossflow separation is the mechanism that triggers the transi-
tion to turbulent flow for this case.

The next set of computations for this case was carried out
by tripping the flow to become turbulent downstream of the
line A-A depicted in Fig. 3. The resulting surface streamline
patterns for the CD and FDS scheme are shown in Fig. 5. The
computed streamline patterns are in good agreement with each
other and are in much better agreement with the data than the
laminar results in Fig. 2. The computational results are in
excellent agreement with the data in the leading-edge region
and in the region bounded by the windward side and the
primary crossflow separation line.

J. AIRCRAFT
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Fig. 2 Surface streamlines—laminar computations, case I. P—Pri-
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The predicted location of the primary separation line is in
fair agreemerit with the data; comparison with Fig. 2 indicates
that the primary crossflow separation line is moved down-
stream due to transition, as expected, and the secondary cross-
flow separation line moves to the leeward side. Although the
predicted locations of reattachment and secondary crossflow
separation lines are found to be somewhat windward from
their measured positions, the overall agreement with the data
is considered quite good, particularly in view of the fact that
a very simple-minded transition model has been employed.

Altliough not shown, the pressure distribution indicates
little effect due to the transition model and shows gernerally
good agreement with the experimentally measured pressures.
The skin-friction distributions for the windward and leeward
planes of symmetry are compared with the data in Fig. 6. The
skin-friction levels are similar to the fully laminar results,
except in the downstream region on the leeward side, where
the agreement of computed results with the data is improved
with the transitional calculations.

The ¢, distributions in the circumferential direction at six
axial locations are shown in Fig. 7. The transitional computa-
tions. show significant improvement in correlation with the
data compared to the fully laminar computations (not shown),
particularly on the aft portion of the body. The agreement
near x/L = 0.40 is actually better with the fully laminar calcu-
lations, indicating that the assumed transition line extends too
far forward on the body. Results from the FDS scheme give
slightly better agreemert with the data in regions where the
skin friction undergoes sharp changes, which is attributed to
lower levels of artificial dissipation inherent in this scheme.
Although the quantitative agreement with the data is not
perfect, the computed results track the overall trends and
levels of the measured cf quite well and, in light of the simple
transition and turbulence models employed here, such correla-
tion with the data is considered quite satsifactory. The calcula-
tions do point out the major influence of the transition loca-
tion at this Reynolds number. At higher Reynolds number,
wheré the transition occurs ahead of the primary separation,
the influence of transition location is not as significant.

Case II, Re; =7.7x 105, «=10 deg

For this case, the transition is fixed experimentally at a
distance of x/L = 0.2 downstream of the leading edge and the
crossflow separation is substantially rediced. Meier et al.? give
surface shear-stress and flow-inclination data and profile data
at selected stations. Numerical solutions for this case were
obtained by assuming an instantaneous transition to turbulent
flow at x/L =0.2. The skin-friction distributions in the cir-
cumferential direction at four axial stations obtained from the
CD and FDS schemes are comparéd with the data in Fig. 8.
The computational results are in good qualitative agreement
with the data and display the experimentally observed trends
going from the windward to the leeward side. However, the
computed skin-friction levels on the windward side are about
15-20% lower than the experimental values. Meier and Ce-

: CD scheme
————— FDS scheme -
~—-— Experiment .\

x 1073

o 30 60 90 120 150 180
o, circumferential angle, deg

a) Forward stations

PROLATE SPHEROID 991

a)

b)

Fig. 5 Surface streamlines—transitional computations, case I. P—
Primary separation, S—Secondary separation, R—Reattachment line.
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Fig. 6 Skin-friction comparisons at symmetry planes—transitionai
computations, case 1.
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Fig.7 Skin-friction comparisons at fixed axial stations—transitional computations, case L.
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Fig. 8 Skin-friction comparisons for fixed transition, case II.

beci! and Radwan® have also obtained numerical solutions for
this case using three-dimensional boundary-layer equations
with similar eddy-viscosity turbulent modéls. The skin-friction
levels reported in their work are in close agreement with the
present numerical results on the windward side. Thus, the
discrepaincy observed in the skin-friction levels is not associ-
ated with numerical issues; rather it could be dttributed to
either an experimental error or a def1c1ency in the turbulence
model.

The surface shear-stress angle (flow angle) distributions,
corresponding to the skin-friction distributions of Fig. 8, are
shown in Fig. 9. The predicted values of shear-stress angles
using the CD and FDS schemes are in excellent agreement with
each other. The correlation with the experimental data is also
quite good, except in a small region near the leeward side on
the aft part of the body, where strong negative crossflow
velocities are observed. In contrast with our results, the
boundary-layer techniques of Meier and Cebeci! and Radwan’®
seem to overpredict the negative crossflow velocities when
compared with the data. As was pointed out by Meier and
Cebeci,! this could be due to the lack of inviscid/viscous
interaction effects in the boundary-layer calculations in this
region. A possible reason for the slight discrepancies observed
in the prediction of shear-stress angles in the present case may
be the assumption of isotropic turbulence in both numerical
schemes. Ragab,?! in an earlier work on prolate spheroids, has
shown that nonisotropy of turbulence has a strong influence
on profiles and shear angles for such flows.

Case 11, Rez =7.2%10°, =30 deg

The experimental data for this highly separated case has
been documented by Kreplin et al.? In the experimental study,
the flow downstream of the leading edge became turbulent
near the windward line of attachment via natural transition. It

was pointed out by Meier and Cebeci® that at these higher:

values of Reynolds number, the location of transition does not
have a strong influence on the onset or development of the
crossflow separation line and flow pattern away from the
transition line. The present calculations were therefore per-
formed under the assumption of fully turbulent flow, since
modeling of the natural transition was considered unwar-
ranted. for this case.

The side and top views of the computed surface streamhne
patterns are compared with the experimental data in Figs. 10
and 11, respectively. The results from the CD and FDS
schemes are found to be in excellent agreement with each
other. The computed results compare quite well with the data
in the locations of the primary and secondary separation lines.
There are differences, as expected, near the leeward side in the
leading-edge region, since the flow in the experimental study
was laminar with natural transition further downstream. The
good agreement of the computations with the experiment en-
forces the observation that at this condition the downstream
influence of the transitional region is very limited. Although
not shown, the agreement of the surface pressure contours
between the CD and FDS schemes and the experimental data
is quite good.
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Fig. 9 Shear-stress angle comparisons for fixed transition, case II.
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Fig. 10 Surface streamlines—side view, case IIIL

c) FDS scheme

Fig. 11 Surface streamlines—top view, case III.
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Concluding Remarks

Two computatlonal algorithms for the compress1ble Navier-
Stokes equations have been used to obtain viscous flow solu-
tions over a 6:1 prolate spheroid at angle of attack. The first
algorithm uses an upwind-biased flux-difference-splitting ap-
proach for the convective and pressure terms and the second
uses a centrally differenced approach. The computational re-
sults and analysis of the artificial dissipation terms in the
direction normal to the surface indicate that the former is less
sensitive to the computational grid than the latter in its present
state, owing to the matrix rather than scalar form of the
dissipation terms. Grid refinement studies have been con-
ducted with both algorithms to determine the effects of trun-
cation error on the numerical solutions, which are believed to
be small for the results presented.

The comparisons encompass a range of Reynolds numbers
and angles of attack. At the lower Reynolds numbers, transi-
tion to turbulent flow occurs downstream of the primary
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separation line and the calculation is sensitive to the assumed
transition line. With a transition line specified based on the
experimental data, reasonable agreement of the primary and
secondary separation lines, as well as skin-friction levels
downstream of separation, is obtained. At the high Reynolds
numbers, transition occurs ahead of the separation lines and
the location of transition is not as critical. At the highest
Reynolds number with fixed transition location, the computed
skin-friction data agree well with previous boundary-layer
computations, although both are somewhat lower than the
experimental data on the windward side. At the high angle of
attack, and higher Reynolds number flow, the flowfield is
dominated by the primary and secondary vortex structures
over the body; the predicted primary and secondary separa-
tion lines are in excellent agreement with the experlmental
data.
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